The Modified Simpson`s Rule for Line Integrals

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Substitution Rule for Lebesgue–stieltjes Integrals

We show how two change-of-variables formulæ for Lebesgue–Stieltjes integrals generalize when all continuity hypotheses on the integrators are dropped. We find that a sort of “mass splitting phenomenon” arises. Let M : [a, b]→ R be increasing. Then the measure corresponding to M may be defined to be the unique Borel measure μ on [a, b] such that for each continuous function f : [a, b] → R, the i...

متن کامل

Handout Six: Line Integrals

But this is not real life! Suppose next that we are still moving in a straight line but the force is variable: indeed, the typical example of this is that of a spring: suppose we have a mass M on a spring, and we stretch the mass a distance of x units from its equilibrium position. The spring will pull back in the opposite direction, and the early British scientist Robert Hooke formulated a sim...

متن کامل

a cauchy-schwarz type inequality for fuzzy integrals

نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.

15 صفحه اول

A Sinc-hunter Quadrature Rule for Cauchy Principal Value Integrals

A Sine function approach is used to derive a new Hunter type quadrature rule for the evaluation of Cauchy principal value integrals of certain analytic functions. Integration over a general arc in the complex plane is considered. Special treatment is given to integrals over the interval (-1, 1). It is shown that the quadrature error is of order 0(e~ ), where N is the number of nodes used, and w...

متن کامل

Two Point Gauss–legendre Quadrature Rule for Riemann–stieltjes Integrals

In order to approximate the Riemann–Stieltjes integral ∫ b a f (t) dg (t) by 2–point Gaussian quadrature rule, we introduce the quadrature rule ∫ 1 −1 f (t) dg (t) ≈ Af ( − √ 3 3 ) + Bf (√ 3 3 ) , for suitable choice of A and B. Error estimates for this approximation under various assumptions for the functions involved are provided as well.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Sciences

سال: 2002

ISSN: 1812-5654

DOI: 10.3923/jas.2003.9.13